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3D human reconstruction is an important task in computer 

vision to generate human 3D models from photos or videos. But 

the research of reconstruction requires human body data with 

annotation.  Previous widely used neural-network-based 

annotators annotate 3D human models automatically but there is 

still room for quality improvement. In our research, we 

innovatively regard the deviation between the annotations and 

true human poses as a type of noise. We propose a new annotator 

DiffAnnot using a denoising diffusion model to further refine the 

annotations from a pre-trained annotator. We train and test 

DiffAnnot on various datasets including 3DPM, MPI-INF-3DHP 

and Halpe. DiffAnnot is evaluated on several widely used metrics 

including MPJPE and shows outstanding performance. The code 

is available publicly at https://github.com/PaperL/Human-3D-

Diffusion. 
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I. INTRODUCTION 

3D human reconstruction is aiming to localize human mesh 
vertices in the 3D space. Human body reconstruction based on 
images is an essential research task for activity understanding[1], 
image and video editing, VR/AR content creation, and costume 
design in films and games. Reconstruction for other 3D objects 
such as cars also has a wide range of application scenarios[2].  
Human body reconstruction provides concise and simple human 
body models for further research in these areas. Precise and 
effective human reconstruction result makes it possible for other 
subsequent research to reduce error in the data end, therefore 
enhancing the training efficiency. 

The existing reconstruction methods can be roughly divided 
into parameterized methods and non-parameterized methods[3]. 
Non-parameterized methods directly reconstruct the high-
dimensional human surface grid instead of the low-dimensional 
parameter representation. This kind of method generally 
requires some special data acquisition equipment, such as a laser 
scanner or depth camera. There are also solutions using a direct 
method to extract features from sketches and reconstruct 3D 
objects[4]. The parametric reconstruction methods rely on a 
parameterized human body model based on statistics, and a set 
of low dimensional vectors, namely human parameters, 
describing the human 3D shape. Common parameterized human 

models include SCAPE[14], SMPL[12], SMPL-X[13], etc. And 
to fit these models, annotated data is required. 

Data annotation is the action that annotators process data 
used in machine learning with the help of annotation tools, 
including image annotation, voice annotation, text annotation, 
etc. In the research of human body reconstruction, data 
annotation is a part of the data preparation. Although traditional 
manual data annotation has brought many job opportunities, 3D 
human annotation is costly and time-consuming. Additionally, 
most datasets related to the project are annotated by hardware, 
complicated and expensive to use. For these reasons, it is 
particularly necessary to research automatic annotation. 

Previous work on 3D human automatic annotation has 
mainly included optimization-based 3D pseudo-GT annotators 
and neural network-based 3D pseudo-GT annotators. The 
optimization-based annotators fit 3D human model parameters 
for target 2D/3D joint coordinates or 3D point clouds, only 
fitting 3D human model parameters to each sample without 
considering others, thus they often produce wrong 3D pseudo-
GT results. Recently introduced neural network-based 3D 
pseudo-GT annotators like SPIN[5] predict SMPL[12] 
parameters using a neural network and run an optimization-
based annotator. NeuralAnnot[6], a neural annotator proposed 
by Gyeongsik et al, brought little insight, but it only aggregated 
different datasets such as MoCap datasets[28] and In-the-wild 
datasets. These annotators are all still to be improved for further 
application to automatically generate annotation. 

In this paper, we present a new neural annotator DiffAnnot, 
using a diffusion model to denoise and perform greatly in some 
3D human datasets. We apply the latest progression in diffusion 
models to solve this problem from a denoising view, inspired by 
the improved denoising diffusion probabilistic models[25] 
proposed by Alex and Prafulla. These denoising diffusion 
models are a class of generative models, matching a data 
distribution by learning to reverse a multi-step noising process. 
Through the combination of the diffusion model and existing 3D 
human reconstruction models like Human Mesh Recovery 
(HMR)[7], we observe a remarkable loss decline in some 
classical conventional datasets such as 3DPW and MPI-INF-
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3DHP[15][16]. We also evaluate our method on Halpe[17], 
achieving impressive performance. 

Our contribution and value of research can be summarized 
as follows: 

• We present DiffAnnot, a new neural annotator applying 
denoising diffusion probabilistic models on existing 3D 
human reconstruction models, which is a momentous 
innovation. 

• Our model performs extraordinarily well in some both 
conventional 3D human datasets like 3DPW and datasets 
for other purposes like Halpe, bringing obvious loss 
decline and obtaining better visualization results. 
Besides, our method has great robustness and 
extensibility. 

• Automatic annotation with our method has greatly saved 
human and material sources, providing convenient 
support for future research. 

II. RELATED WORK 

A. 3D Human Reconstruction and Annotation 

Recent methods have shown progress rapidly in estimating 
the major body joints. There are many parameterized human 
models including SCAPE, SMPL, SMPL-X, etc. There are also 
many methods that estimate 3D bodies from images and several 
methods use deep learning to regress the parameters of SMPL. 
Zheng et al. proposed DeepHuman[8], an image-guided 
translation CNN for 3D human construction, fusing different 
scales of image features into the 3D space through volumetric 
feature transformation. Kanazawa et al. presented Human Mesh 
Recovery (HMR) [7], an end-to-end framework for 
reconstructing full 3D meshes from a single RGB image. As for 
neural annotation about 3D human construction, Moon et al. 
proposed the first one-stage neural network-based annotator[6], 
producing much more accurate pseudo-GTs than previous 
optimization-based annotators. 

B. Denoising Deffusion Probabilistic Model 

Sohl-Dickstein et al. introduced a class of generative models 
that match a data distribution via learning to reverse a gradual, 
multi-step noising process, namely diffusion probabilistic 
models[22]. Recently, Ho et al. showed equivalence between 
DDPM and score-based generative models Song and Ermon 
proposed to denoise score matching[23][24]. They also 
produced high-quality images using DDPM. Nichol et al. 
improved the generative model with some simple modifications, 
achieving competitive loglikelihoods while maintaining high 
sample quality. 

III. METHODS 

In this section, we give a detailed introduction about the 
architecture of our DiffAnnot, which contains a classical human 
reconstruction model, a diffusion model and some intermediate 
components. Besides, its training strategy and some practice 
details are immediately followed. 

A. Architecture Overview 

The basic idea is that there is a deviation between 
reconstruction results of current method and the ground truth. 
We assume that this deviation can be regarded as a type of noise 
and then train a denoising model using a large amount of 3D 
human data to refine the previous reconstruction results. We use 
a diffusion model to do this denoising job given that it is one of 
the best solutions in this field. 

Our DiffAnnot takes image I as the input and outputs revised 

3D human model parameters 𝚯𝟐. I will firstly enter a normal 

human reconstruction model F, which is called the frontend of 

our architecture. The frontend predicts rudimentary parameters 

𝚯𝟏. Indeed, the frontend is an implementation of the previous 

NeuralAnnot work which can do this task on its own with 

relatively not that good results. Then 𝚯𝟏  is processed to a 

flattened vector V and fed into the latter part, a diffusion model. 

The diffusion model B, called the backend, denoises the 

 

Fig. 1. DiffAnnot architecture overview. Dataset provides original image as model input I and 2D/3D ground truth(joint coordinates) as supervision. 

Frontend takes input image I and uses pre-trained HMR model F to get rudimentary parameters 𝚯𝟏. Backend first coverts 𝚯𝟏 to a flatten vector V1. The 

diffusion model B denoises V1 and gets vector V2. Then V2 is restored to parameters 𝚯𝟐. 2D/3D ground truth is used to calculate loss with 𝚯𝟐. The loss 

supervises B to learn a data distribution for denoising. In evaluation, 𝚯𝟐 is the denoised annotation as the result of DiffAnnot. 



previous result 𝚯𝟏 as mentioned above. After being trained, we 

can get the refined result 𝚯𝟐 from B, which is the final output 

of our annotator expected to achieve a better reconstruction 

than 𝚯𝟏. 

B. 3D Human Model Parameters 

We adopt SMPL24[12] as our 3D human model parameter 
model, which consists of 24 pose vectors {𝜽𝒊}  and 10 linear 
shape coefficients {𝜷𝒊}. Usually the first pose vector is separated 
out and called global orient or root, while the left 23 are known 
as body poses corresponding to 23 joints. 

The linear shape coefficient 𝜷𝒊 is just a scalar while there are 
many approaches to represent the pose vector  𝜽𝒊, such as axis 
angle representation, rotation matrices and quadratic numbers. 
We choose rotation matrices as the universal representation in 
our architecture given that it brings more parameters to backend 
and enables more precise refinement. 

About the flatten procedure, we should take a look at some 
shapes. According to the above, we can store {𝜽𝒊}  in a 
24 × 3 × 3  tensor in the rotation matrices representation. 
Therefore, the converted vector V has 226 dimensions. 

C. Frontend 

The frontend F itself is a neural annotator with classical 
HMR[7] as the end-to-end reconstruction method. Overall, 
HMR is a GAN architecture[9], which is a ResNet-50 
encoder[10], a 3D regression component and a discriminator. 
Since it is an end-to-end reconstruction framework, F takes the 
image I as the input and directly predicts human shape and pose 
in the above form 𝚯𝟏. 

D. Backend 

The backend is nothing more than a diffusion model. While 
we use it to denoise, it is actually a probabilistic generative 
model. We adopt the improved version of DDPMs[25] which is 
proven to be equivalent to the score based generative models[26]. 
For a deep understanding of the reason that we use it to refine 
the human reconstruction, it is necessary to briefly review the 
formulation of DDPMs. 

Generally, the diffusion model contains two processes: the 
forward process or the diffusion process and the backward 
process or the denoising process. Starting from a data 
distribution 𝑥0 ∼ 𝑞(𝑥0) , what the forward process does is 
adding Gaussian noise to the original data distribution step by 
step according to some variance 𝛽𝑡. 

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(xt; √1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐈)              (1) 

Knowing how to do such variance schedule or noise 
schedule is the most important question in a diffusion model. 
The variance schedule here can be learned by reparameterization  
[29]. By reparameterizing, with 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡̅̅ ̅ = ∏ 𝛼𝑠

𝑡
𝑠=0 , 

we have 

𝑥𝑡 = √𝛼𝑡̅̅ ̅𝑥0 + √1 − 𝛼𝑡̅̅ ̅𝜖                         (2) 

where 𝜖 is the standard Gaussian noise with 𝜖 ∼ 𝒩(0, 1). And 
we get the diffusion kernel as follows. 

𝑞(𝑥𝑡|𝑥𝑡−1, 𝑥0) = 𝒩(xt; √𝛼𝑡̅̅ ̅𝑥0, (1 − 𝛼𝑡̅̅ ̅)𝐈)          (3) 

For the backward process, it is easy to apply Bayes theorem 
to derive Eq (5). 

𝜇𝑡̃(xt, x0) =
√𝛼𝑡−1̅̅ ̅̅ ̅̅  𝛽𝑡𝑥0 + √𝛼𝑡(1 − 𝛼𝑡−1̅̅ ̅̅ ̅̅ )𝑥𝑡

1 − 𝛼𝑡̅̅ ̅
 

𝑞(𝑥𝑡−1|𝑥𝑡 , 𝑥0) = 𝒩(xt; 𝜇𝑡̃(xt, x0), 𝛽𝑡𝐈)            (5) 

where  𝜎𝑡
2 =  𝛽𝑡 =

1−𝛼𝑡−1̅̅ ̅̅ ̅̅ ̅

1−𝛼𝑡
𝛽𝑡 . Eq (3) and Eq (5) can generally 

represent these two processes and give us a math overview of 
DDPMs. 

  Practically, to make the diffusion model adaptive to V, we 
modify some components in the current diffusion model,  
replacing UNet[11] with a simple multi-layer perceptron.  

And after being trained in the dataset, we sample the refined 
result 𝚯𝟐 from the diffusion model, starting from the original 
output 𝚯𝟏. The sampling or inference rule will be introduced 
later. 

E. Training Strategy 

Since the frontend is pretrained, we only introduce the 
training algorithm for our modified diffusion model here. Recall 
that the target of the diffusion model is to learn a distribution 𝜇𝑡̃. 
To be supervised by 2D or 3D GT, we add a term in the loss 
function using the same metrics we will introduce in the 
experiment part, MPJPE for 2D GT supervision and PA-MPJPE 
for 3D GT supervision. To balance the original loss and our 
additionally introduced loss, coefficients 𝛾3𝐷, 𝛾2𝐷 are needed to 
scale them. Then the loss function can be formulated as 

𝐿 = 𝐿𝑜𝑟𝑖 + 𝛾3𝐷𝐿3𝐷 + 𝛾2𝐷𝐿2𝐷 

In the case 3D GT or 2D GT is not provided, the 
corresponding term is set to 0. 

F. Inference 

The inference here means the process of getting the refined 
result 𝚯𝟐 from the trained diffusion model by sampling starting 
from 𝚯𝟏. It is worth noting that in each denoising step the result 
does not always get better, for which we will give an intuitive 
visualization in the experiment part. Therefore, a head-on 
problem is how we get the optimized result when sampling, that 
is, select appropriate sampling steps 𝑠 such that when we take 
input  𝚯𝟏 as 𝑥𝑠 and denoising it back to 𝑥0, the result  𝚯𝟐 = 𝑥0 
is the best with respect to some specified metrics.  

 Note that when we train our diffusion model, there is a 
parameter 𝑠𝑚𝑎𝑥 we must set to specify the maximum number of 

steps of diffusion. Let 𝐿′(𝑠)  be the loss when taking 𝑠 

sampling steps, then our task can be formalized as find 

𝑠 = arg min 𝐿′(𝑠) 

A simple idea may be directly searching 𝑠 ∈ {0, 1, … , 𝑠𝑚𝑎𝑥} 
to get the best result, which is certainly time-consuming. 

Observing that although 𝐿′  may not be monotonous nor 

unimodal, it is unlikely to have multiple minimum points. Then 
we can assume that if the result is continuously getting worse for 
some period, it is time to stop searching. The algorithm can be 
described as follows. 

  



where 𝑥 is the input 𝚯𝟏, gt is the ground truth used to calculate 
loss and 𝐾 is a threshold of how long this getting-worse situation 
is allowed to sustain. 

IV. EXPERIMENTS 

In this section, we perform experiments to get a glimpse of 
the results of our DiffAnnot. 

A. Implementation Details 

Our implementation is strongly dependent on the 3D human 
parametric model toolbox MMHuman3D[27], whose HMR 
implementation serves as both our baseline and the frontend of 
our architecture. And the backend refers to the codebase of 
Improved Denoising Diffusion Probabilistic Models[25]. In 
detail, the backbone of the HMR is ResNet50 and pretrained on 
a mixed dataset: MoSh[18], MPI-INF-3DHP[16], LSP[19], 
LSPET[19], MPII[20], COCO 2014[21]. 

In respect of the parameters, the initial learning rate of our 
diffusion model is 8 × 10−5 and the EMA rate is set to 0.9999. 
Additionally, we use the diffusion with a uniform scheduled 
sampler and 1000 diffusion steps. K in the inference algorithm 
is set to 10 in our implementation. 

B. Datasets 

Our experiments are conducted in three different datasets: 
3DPW[15], MPI-INF-3DHP[16], and Halpe[17]. As stated in 
table I, here the first two have 3D GT joint coordinates, which 
are commonly known as the MoCap datasets[28] while the last 
one only provides 2D joint coordinates, which are known as the 
In-the-Wild datasets. Our annotator can either be supervised by 
3D joints or 2D. 

Note that before feeding to our model, we need to do a data 
cleansing to get rid of some pictures which are unsuitable for our 
tasks, for example, pictures with too many people and pictures 
with a very incomplete human body. This is especially important 
in the Halpe dataset since it is not created specifically for this 
task. And for 3DPM and MPI-INF-3DHP, we only choose their 
test set since the HMR is pretrained on these two datasets using 
their train set. 

C. Metrics 

To measure the effectiveness of our method, we introduce 
two classical metrics in the region of human reconstruction. 
Because the annotator is supervised by joint positions, the loss 
is measured by mean per joint position error (MPJPE). It can be 
calculated as follows: 

MPJPE =  
1

N
∑ ‖ 𝐽𝑖 − 𝐽𝑖′ ‖2𝑁

𝑖=1                        () 

Where N is the number of joints. Depending on different 
conventions, it can be 14, 17, 24, etc. And for those datasets 
which give 3D GTs, we can additionally add the PA-MPJPE as 
one of our metrics. Compared to MPJPE, it will do an alignment 
first by rotating or translating and then calculate the mean error. 

D. Results 

For comparison, we will use the original HMR as the 
backbone of the NeuralAnnot[6]. The main difference between 
these two annotators lies in whether there is a diffusion model to 
fix their annotations, which shows the effect of our method. We 
use the same pre-trained weights in frontend for a fair 
comparison. The results are shown in table II. 

TABLE I.  SIZE AND CONTENT OF DATASETS 

Dataset 

Number of 

Pictures 

(Total) 

Number of 

Pictures 

(Cleansed) 

Has 3D 

GT? 

3DPM 35515 35515 Yes 

MPI-INF-

3DHP 
2875 2875 Yes 

Halpe 38118 11809 No 

 

TABLE II.  LOSS DREMENT 

Dataset 

HMR Annotator DiffAnnot (Ours) 

MPJPE 
PA-

MPJPE 
MPJPE 

PA-

MPJPE 

3DPM 112.34 67.53  111.14 65.53 

MPI-

INF-

3DHP 

125.17 90.36 124.63 86.28 

Halpe 103.54 / 99.94 / 

 

  

Fig. 2. DiffAnnot architecture overview. 



Those data illustrate that our method has a slight but 
significant improvement compared to the baseline neural 
annotator. 

From a different perspective, the proportion of those with a 
decrement in respect of these two metrics in the overall data also 
makes some sense. Note that the diffusion part does not always 
make the results better, given that the original reconstruction 
result is good enough so the diffusion method only makes it 
deviate from the ground truth. But by simple observation, the 
result will not get worse as well since when sampling takes 0 
step, it is equivalent to the original method. So we can divide the 
results into two parts: those being optimized and those 
remaining the same. The proportion is shown as the following 
table III: 

As can be seen from the table, averagely and approximately, 
70% of the total data reach better results. 

Here we can visualize some of the optimized data to deeply 
where and how the original reconstruction results are optimized. 
We select three frames in the 3DPW dataset, and visualize and 
compare the human mesh. Fig 3. (a) illustrates that our method 
puts the left man’s arm down. This is reasonable because 
according to the context (meaning the before and after frames of 
current frame), this man’s covered right arm should be close to 
his body. The diffusion model magically improves this part. The 

fix shown in Fig 3. (b) does a similar thing, which puts the man’s 
right arm down to make it closer to his body. 

Fig 3. (c) is the most exaggerated one. There is a big mistake 
in the original reconstruction result. The body of the fencer is 
totally opposite to the ground truth. As a result, the PA-MPJPE 
of this frame is 136.68, which is more than twice the average. 
Interestingly, it seems that our DiffAnnot tries to rotate the total 
body around to the correct position. But it is hard for the 
denoising process to completely correct this big mistake. It does 
its best effort towards the right direction and successfully drops 
the loss to 104.74, with over 20% decrement. 

 While we have seen two “Put Arm Down” fixes, Fig 3. (d) 
is a “Put Arm Up”. As shown in the picture, our method 
successfully corrects the elbow to the correct position. However, 
in respect of the hand part, there is still room for improvement. 

TABLE III.  PROPORTION OF OPTIMIZED SAMPLES IN DIFFERENT 

DATASETS 

Dataset Proportion of Optimized Samples 

3DPM  0.68 

MPI-INF-3DHP 0.78 

Halpe  0.62 

 

                         
                        (a)                                       (b)                                       (c)                                       (d) 

Fig. 3. Comparison of several 3D human annotation visualization between HMR and DiffAnnot. 

HMR 

DiffAnnot 

  

Fig. 4. Example of loss changes in the progress of sampling 



E. Discussion in Sampling 

As stated above, there is a simple algorithm in finding the best 
result during sampling. Here we can visualize the trend of loss 
and human mesh in the sampling progress, hoping to bring a 
deeper understanding of our method. 

We choose the same frame as Fig 3.(a), which is 
downtown_bar_00/image_00052.jpg in 3DPW dataset, as an 
example. 

Fig. 4. describes the relationship between the number of 
denoising steps and the loss. By selecting appropriate steps, 
which is 35 in this example, we can get the best result. To show 
that this phenomenon is not just overfitting but a significant 
improvement, we visualize the mesh changes in this process as 
Fig. 5. 

We can see that the arm is gradually put down as the sampling 
steps increase. In step 35, the arm is lowered to the most suitable 
location which achieves minimal loss. 

 

V. CONCLUSION 

Our goal is to get a  better neural annotator, which is able to 
automatically generate data annotation for a 3D mesh model of 
a human body from a single RGB image. To that end, our 
method DiffAnnot uses a score-based denoising diffusion model 
on the existing method, which has been able to generate 
annotations for the datasets. In DiffAnnot, the noise can be 
removed from the annotation generated by the existing method, 
leading to better results with higher accuracy. We applied our 
method to three datasets with thousands of images of real 
humans with diverse poses. Our results were compared with the 
annotations generated by HMR[7] model from MMHuman3D 
toolbox[27], which revealed that our method makes a 
remarkable improvement. Additionally, we visualized some 
examples of our refined 3D human annotations, compared them 
with original annotations and figured out the concrete body parts 
that have been improved. Moreover, the visualization may 
enlighten the areas to be improved, shedding light on the deeper 
research. 
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